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Abstract. We investigate properties and the distribution of light nuclei (A ≤ 4) in symmetric nuclear
matter of finite temperature within a microscopic framework. For this purpose we have solved few-body
Alt-Grassberger-Sandhas–type equations for quasi-nucleons that include self-energy corrections and Pauli
blocking in a systematic way. In a statistical model we find a significant influence in the composition of
nuclear matter if medium effects are included in the microscopic calculation of nuclei. If multiplicities are
frozen out at a certain time (or volume), we expect significant consequences for the formation of light
fragments in a heavy ion collision. As a consequence of the systematic inclusion of medium effects, the
ordering of multiplicities becomes opposite to the law-of-mass action of ideal components. This is necessary
to explain the large abundance of α-particles in a heavy ion collision that are otherwise largely suppressed
in an ideal equilibrium scenario.

PACS. 25.70.-z Low and intermediate energy heavy-ion reactions – 25.70.Pq Multifragment emission and
correlations – 21.65.+f Nuclear matter – 21.45.+v Few-body systems

1 Introduction

Heavy ion collisions provide a tool to investigate the phase
structure of nuclear matter. Depending on the energies,
the region of temperature and density explored might be
rather large. The information about the composition of
nuclear matter is contained in the equation of state. At col-
lision energies per nucleon well below one GeV the equa-
tion of state is described by purely hadronic degrees of
freedom. It is a basic ingredient in microscopic simulations
of the heavy ion collision, such as the Boltzmann-Uehling-
Uhlenbeck (BUU) [1–5] or the quantum molecular dynam-
ics (QMD) [6–8] simulations. The challenge is to extract
information about the different stages of the evolution of
the heavy ion collision. This information could be provided
by fragments produced in the different stages of the colli-
sion as has been done recently for the case 129Xe + natSn
by the INDRA Collaboration [9,10].

An early analysis of multi-fragmentation in a heavy
ion collision of 36Ar + 58Ni at several energies below
100A MeV has been given in ref. [11]. The authors study
a class of evaporation events at central collisions [12]. Dur-
ing these events more than 90% of the charged particles
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were detected and isotopically identified. Within a thermal
(and chemical) equilibrium scenario [13] of ideal-gas com-
ponents (including states up to excited 9B), supplemented
by finite volume effects [14] and a model of side-feeding,
they found a remarkable agreement with the experimen-
tal data [11]. Temperature has been varied between 10 and
25 MeV and the freeze-out volume fixed to 1/3 of normal
nuclear matter density.

A more elaborated statistical analysis has been
done for the recent INDRA experiment 129Xe + natSn.
The measured multiplicities of the central collisions
by the INDRA Collaboration show a large fraction of
α-particles [10]. In contrast, a naive model of a gas of
ideal components would give a much smaller number
of α-particles, depending on the freeze-out density. The
INDRA Collaboration provides a detailed comparison of
their data within a statistical multi-fragmentation model
(SMM) [15]. This model goes beyond a simple picture of
an ideal gas and describes multiplicities and some other
aspects of the heavy ion collision in question [10].

On the other hand, from a microscopic analysis of
cluster formation, it is known that nuclei dissociate al-
ready at rather moderate densities and temperatures, see,
e.g., [16,17] and references therein. Some details will also
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be given in this paper. The dissociation (Mott effect) is
taken into account, e.g., in modern BUU simulations of
heavy ion collisions and is necessary to reproduce the ex-
perimental data, see refs. [1,2]. It is an effect related to the
Pauli blocking induced by the surrounding medium and
goes beyond the picture of a simple ideal gas of nuclei.

In a recent analysis of the central collision Xe + Sn
at 50A MeV that has been measured by the INDRA Col-
laboration [9], we found that the BUU simulation gives
a proton-to-deuteron ratio that is close to the one ex-
pected by the equilibrium distribution; to be more pre-
cise, for times t > 50 fm/c during the evolution of the
system. This, however, holds only if the equilibrium dis-
tribution includes the above-mentioned dissociation of the
deuteron [5,18].

Therefore, we address the question to what extend the
dissociation of nuclei affects the equilibrium distribution
of nuclear matter. To do so, we investigate a system of
light nuclei at finite density and temperature up to the
α-particle.

Hence, we focus on a new aspect in the distribu-
tion of light nuclei. Since reasonable generalizations of
the Feynman-Galitskii or Bethe-Goldstone equations for
more than two particles become available, the properties
of multi-particle correlations in a medium can now be ad-
dressed microscopically. To demonstrate the effect that
is related to in-medium properties of the light clusters
in question, in particular the α-particle, we explore an
ab initio equilibrium quantum-statistical description of a
many-particle system based on the well-established and
successful (equilibrium) Green function method [19]. To
include a proper description of clusters, we implement an
equal time constraint on the Green functions. This allows
for a cluster expansion of the Green functions as shown,
for example in [20]. In an uncorrelated medium of quasi-
particles the equal time constraint systematically leads to
Dyson equations for clusters with a fixed number of par-
ticles. They include the self-energy corrections and the
Pauli blocking and are rearranged as resolved equations
to use the Alt-Grassberger-Sandhas (AGS) formalism to
solve the respective few-body equations which has been
done for the three- and four-nucleon system in [21,16,17].
Similar equations to treat the in-medium three-body sys-
tem have been proposed previously in refs. [22,23]. As an
interaction we use a nucleon nucleon potential that rea-
sonably reproduces the nucleon nucleon phase shifts and
the binding energies of the light nuclei in question.

In sect. 2 we introduce the consequences of the above-
mentioned cluster expansion method in the equation of
state. This will be done along the lines of [24]. The mi-
croscopic AGS-type equations to treat multi-particle clus-
ters in medium will be explained in sect. 3. We use a
nucleon-nucleon potential that reproduces reasonably well
the nucleon-nucleon scattering data and the binding en-
ergies of light nuclei considered. In sect. 4 we present our
results. In particular, we calculate the equilibrium compo-
sition of nuclear matter for conditions comparable to the
heavy ion collision investigated by the INDRA Collabora-
tion. We summarize our conclusions in sect. 5.

2 Statistical model

To generalize the equation of state for a Fermi system
that includes correlations, the nuclear matter density n =
n(µ, T ) as a function of the chemical potential µ and tem-
perature T can be rearranged in an uncorrelated part nfree
and a correlated one ncorr [24,16],

n = nfree + ncorr. (1)

To abbreviate notation, let 1 denote the quantum numbers
of particle 1. The Fermi function is given by

f(1) ≡ f(E1) = {exp[β(E1 − µ)] + 1}−1 , (2)

where E1 denotes the one-particle energy and β the in-
verse temperature. Presently we describe symmetric nu-
clear matter and hence

nfree = 4
∑

1

f(1). (3)

For a system of nucleons of mass mN the energy is
E1 = k2/2mN . Hartree-Fock approximation introduces
the notion of quasi-particles and quasi-particle energies

E1 → ε1 = k2/2mN +Σ(k), (4)

where
Σ(1) =

∑

2

V2(12, 1̃2)f(2). (5)

The tilde means proper anti-symmetrization (i.e. includ-
ing the Fock term).

As explained in ref. [16] in some detail, the correlated
density can be composed into different cluster contribu-
tions:

ncorr = 2n2 + 3n3 + 4n4 + . . . , nA = nbA + nscA , (6)

where nA denotes the A-particle correlated density pre-
sented as bound nbA or scattering nscA states in chemical
equilibrium. The full expression for the two-particle cor-
related densities n2 has been given in ref. [24].

To evaluate correlated densities, we presently focus on
the bound-state contributions. This is justified in view of
the rather low densities of the final stage of heavy ion colli-
sions. Note, however, that including contributions of scat-
tering states requires major theoretical effort to solve the
respective scatting few-body equations derived in the next
section. The distribution function for the A-body cluster
of fermions is given by

fA(p) = {exp[β(EA −BA − µA)] + ε}
−1

, (7)

where p is the c.m. momentum of the cluster, EA(p) is
the continuum energy, BA > 0 the binding energy of the
cluster, ε = +1(−1) for fermions (bosons), and µA the
respective chemical potential. In equilibrium considered
here µA = Aµ. The density for the nucleus of mass number
A is given by

nbA(µ, T ) = (2S + 1)(2I + 1)
∑

p

fA(p) , (8)

where S denotes the spin and I the isospin of the nucleus.
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3 In-medium few-body equations

The basis of the equations given in this section is the (equi-
librium) Green function approach to describe quantum
statistical systems [19]. The Green functions for a given
number of particles are evaluated at equal imaginary times
assuming an environment of independent quasi-particles,
see e.g. [20]. As a consequence, for a given number of
particles, a Dyson-type equation can be derived that is
only driven by the dynamics of the smaller cluster (clus-
ter mean field approximation) that breaks the Green func-
tions hierarchy. Utilizing resolvents the Dyson-type equa-
tion for a particular cluster can be rewritten as AGS-
type equation [25–28] with an effective Hamiltonian. This
has been shown previously for the nucleon deuteron re-
action [21], the three-nucleon bound state [16] and the
α-particle [17]. In this section we briefly repeat the rele-
vant formulas to introduce our notation.

Utilizing the Dyson equation for clusters it is possible
to introduce resolvents to describe the dynamics of the
system. Defining H0 =

∑n
i=1 εi, with the quasi-particle

self-energy εi the n–quasi-particle cluster resolvent G0 is

G0(z) = (z −H0)
−1 N ≡ R0(z) N. (9)

Here G0, H0, and N are matrices in n-particle space and
z denotes the analytic continuation of the Matsubara fre-
quency [19]. The Pauli-blocking factors for n-particles are

N = f̄(1)f̄(2) . . . f̄(n) + εf(1)f(2) . . . f(n), (10)

with f̄ ≡ 1 − f . Note: NR0 = R0N . Defining the effec-
tive potential V ≡

∑
pairs αN

α
2 V

α
2 the full, G(z), and the

channel, Gα(z), resolvents are

G(z) = (z −H0 − V )−1N ≡ R(z)N, (11)

Gα(z) = (z −H0 −N
α
2 V

α
2 )−1N ≡ Rα(z)N. (12)

Note that V † 6= V and R(z)N 6= NR(z). For the scatter-
ing problem it is convenient to define the in-medium AGS
operator Uβα(z) [21]

R(z) = δβαRβ(z) +Rβ(z)Uβα(z)Rα(z) , (13)

that, after some algebra, leads to the in-medium AGS
equation

Uβα(z) = δ̄βαR0(z)
−1 +

∑

γ

δ̄βγN
γ
2 T

γ
2 (z)R0(z)Uγα(z),

(14)
where δ̄βα ≡ 1 − δβα. The square of this AGS-operator
is directly linked to the differential cross-section for the
scattering process α→ β, for all Fermi functions f(i)→ 0.
Hence the isolated three-body system is recovered. The
driving kernel consists of the two-body t-matrix derived in
the same formalism, however given earlier and known as
Feynman-Galitskii (finite T ) or Bethe-Goldstone (T = 0)
equations [19,29]

T γ
2 (z) = V γ

2 + V γ
2 N

γ
2R0(z)T

γ
2 (z) .

A numerical solution of the three-body break-up reaction
relevant for the chemical distribution in a heavy ion colli-
sion using a coupled Yamaguchi potential has been given
in ref. [21].

For the bound-state problem it is convenient to intro-
duce form factors

|Fβ〉 =
∑

γ

δ̄βγN
γ
2 V

γ
2 |ψB3

〉. (15)

Since the potential is non-symmetric, the right and left
eigenvectors are different, although the bound-state ener-
gies are the same. The eigenvectors are explicitly needed
in our solution of the four-body system. The respective
homogeneous AGS equations are given by

|Fα〉 =
∑

β

δ̄αβN
β
2 T

β
2 (B3)R0(B3)|Fβ〉,

|F̃α〉 =
∑

β

δ̄αβT
β
2 (B3)N

β
2 R0(B3)|F̃β〉. (16)

We now turn to the four-body problem in matter. In
addition to having different channels as for the three-body
system now the channels appear in different partitions
that makes the four-body problem even more involved.
The partitions of the four-body clusters are denoted by
ρ, τ, σ, . . . , e.g., ρ = (123)(4), (234)(1), . . . for (3+1)-type
partitions, or ρ = (12)(43), (23)(41), . . . for (2 + 2)-type
partitions. The two-body sub-channels are denoted by pair
indices α, β, γ, . . . , e.g. pairs (12), (24),. . . The two- and
three-body t-matrices have to be defined with respect to
the partitions that leads to additional indices. A conve-
nient way to solve the four-body in-medium homogeneous
AGS equation is by introducing form factors

|Fσ
β 〉 =

∑

τ

δ̄στ
∑

α

δ̄τβαR
−1
0 (B4)|ψB4

〉, (17)

where δ̄τβα = δ̄βα, if β, α ⊂ τ and δ̄ρβα = 0 otherwise

and |ψB4
〉 is the α-particle in-medium wave function. The

homogeneous equations then read [17]

|Fσ
β 〉 =

∑

τγ

δ̄στU
τ
βγ(B4)R0(B4)N

γ
2 T

γ
2 (B4)R0(B4)|F

τ
γ 〉,

(18)
where α ⊂ σ, γ ⊂ τ . A numerical solution of this equa-
tion is rather complex. In order to reduce computational
time, needed in particular to handle the dependence on
the medium, we introduce an energy-dependent pole ex-
pansion (EDPE) that has been proven useful in many ap-
plications involving the α-particle and is accurate enough
for the present purpose [30]. However, we have to general-
ize the original version of the EDPE because of different
right and left eigenvectors appearing for the three-body
subsystem and given in eq. (16) (for details see [17]).
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In the two-body sub-system the EDPE reads

Tγ(z) '
∑

n

|Γ̃γn(z)〉tγn(z)〈Γγn(z)|

'
∑

n

|g̃γn〉tγn(z)〈gγn|

=
∑

n

Nγ
2 |gγn〉tγn(z)〈gγn|, (19)

where we have chosen a Yamaguchi ansatz for the form
factors for simplicity. The last line shows the explicit
dependence of the Pauli blocking factors. Inserting this
ansatz into the Feynman-Galitskii equation determines
the propagator tγn(z). In the three-body sub-system the
EDPE expansion reads

〈gβm(z)|R0(z)U
τ
βγ(z)R0(z)|g̃γn(z)〉 '∑

t,µν

|Γ̃ τt,µ
βm (z)〉tτtµν(z)〈Γ

τt,ν
γn (z)|, (20)

with the three-body EDPE functions

|Γ̃ τt,µ
βm (z)〉 = 〈gαn|R0(z)|g̃βm〉tβm(B3)|Γ̃

τt,µ
βm 〉, (21)

that we get from solving the following Sturmian equations:

ηt,µ|Γ̃
τt,µ
αn 〉 =

∑

βm

〈gαn|R0(B3)|g̃βm〉tβm(B3)|Γ̃
τt,µ
βm 〉, (22)

ηt,µ|Γ
τt,µ
αn 〉 =

∑

βm

〈g̃αn|R0(B3)|gβm〉tβm(B3)|Γ
τt,µ
βm 〉. (23)

Inserting the EDPE into the homogeneous AGS equa-
tions allows us to redefine the form factors that are now
operators depending on the coordinates of the 2 + 2 or
3 + 1 system, i.e.

|Γ σs
ν 〉 =

∑

βm

〈Γ σs
βm,ν(B4)|tβm(B4)〈gβm(B4)|R0(B4)|F

σ
β 〉

(24)
and therefore the final homogeneous equation

|Γ σs
µ 〉 =

∑

τt

∑

νκ

∑

γn

δ̄στ 〈Γ
σs,ν
γn (B4)|tγn(B4)|Γ̃

σs,µ
γn (B4)〉

×tτtµκ(B4) |Γ
τt
κ 〉 (25)

is an effective one-body equation with an effective poten-
tial V and an effective resolvent G0 defined as

Vσs,τt
µν (z) =

∑

γn

δ̄στ 〈Γ
σs,µ
γn (z)|tγn(z)|Γ̃

σs,ν
γn (z)〉, (26)

Gσs,τtµν,0 (z) = tτtµν(z). (27)

4 Results

4.1 Cluster properties

The binding energies of the few-nucleon systems depend
on the chemical potential µ or equivalently the density

0 0,01 0,02
nN[fm-3]

0

2

4

6

8

B
A

(n
,T

)/
A

 [M
eV

]

Fig. 1. Density dependence of the binding energy per nucleon
of deuterons (dash-dot), Triton (dashed), and α-particle with
Malfliet-Tjon potential (solid), Yamaguchi potential (long-
dashed) at Pc.m.

= 0, as given in ref. [17].

n(µ, T ), the temperature T , and c.m. momentum Pc.m..
For the two-, three-, and four-nucleon systems the bind-
ing energies are shown in fig. 1 for T = 10 MeV and
Pc.m. = 0 [17] as a function of the uncorrelated nuclear
density nN . The line BA = 0 reflects the respective con-
tinuum threshold. We mention here that the medium de-
pendence of the binding energies is rather similar for dif-
ferent two-body potentials, although their results for the
isolated system may be very different for the few-nucleon
systems considered. This has been mentioned earlier, but
it can also be seen from the two lines representing dif-
ferent potentials for the α-particle, i.e. Yamaguchi [31]
(long-dashed) and Malfliet-Tjon potential [32] (solid) after
renormalizing the binding energies to the same value of the
MTI-III potential. For 3He that is not shown in fig. 1 the
dissociation density is slightly smaller due to the Coulomb
force that has been evaluated perturbatively. However, for
asymmetric nuclear matter, e.g. Np/Nn ' 0.72 (for the
129Xe+ 119Sn reaction) this effect is compensated [33].

Because of the medium the pole of the bound state
moves to the continuum threshold as seen in fig. 1.
The bound state vanishes because of the quasi-particle
nature of the cluster. However, investigating the zeros
of the two-body Jost function we found earlier that the
quasi-deuteron “survives” as a virtual bound state with
different energies, depending on the densities above the
dissociation line [34]. This is a similar state as the virtual
1S0 nucleon nucleon state at 70 keV. This means that
the quasi-deuteron retains its quasi-particle nature of
being an infinitely long-living state and does not become
a resonance. Only going beyond the quasi-particle picture
the deuteron spectral function will aquire an imaginary
part and hence the deuteron becomes a state of finite
lifetime in the medium. This is due to break-up processes
in nuclear matter, the simplest one being the three-
nucleon reaction [21]. Such an investigation for three- and
four-body system is also technically involved and still
needs to be done.

Also a possible appearance of Efimov states related to
B → 0 of the sub-system needs further investigation [35].
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Fig. 2. Density dependence of the binding energy of the
α-particle for finite Pc.m.

as indicated in the legend.

Since the Efimov states are “excited” states, e.g., for the
three-body system they are close to the 2 + 1 threshold,
their blocking may be smaller since the wave functions
contain higher-momentum components, hence the slope
of their dependence on the density is flatter. Also, as seen
from fig. 1, the slope of the binding energies as a func-
tion of densities for the larger clusters is steeper. On the
other hand, the sub-system is not at rest in the larger
cluster, hence the binding energy changes, as we will show
in the next paragraph, and therefore a careful analysis
is needed that would go beyond the present scope of the
paper. Hence so far no conclusion can be drawn for the
appearance of Efimov states, but it is an important issue
since Efimov states might effect the equation of state for
clustering Fermi systems.

For a finite c.m. momentum relative to the medium (at
rest) the influence of the medium is weaker, as less com-
ponents of the wave functions are blocked by the Fermi
sea. For deuteron [36] and triton [16] this has been given
in earlier references, see also references therein. In fig. 2
we give the results for the α-particle. Note again that the
medium effects do not change the elementary property of
an α-particle, however, after introducing effective degrees
of freedom, the α-particle and any other cluster considered
here consists of quasi-nucleons and not elementary nucle-
ons. Besides the change of nucleon self-energy also the
binding energy of the cluster is changed and hence the
clusters can be viewed as quasi-deuterons, quasi-tritons,
quasi-α’s, etc., i.e. clusters with the respective self-energy
corrections.

For a given temperature, here we chose T = 10 MeV,
the momentum of dissociation Pdis is defined by the con-
dition

B(ndis, T, Pdis) = 0, (28)

i.e. the density ndis and the momentum Pdis where bind-
ing of the nucleons is lost. For a system of atoms and ions
this scenario can be related to a transition of an isolator to
a conductor, since electrons can move away from the ion
because of the dissociation property. The respective dis-
sociation lines for deuterons, tritons/3He, and α-particles
are shown in fig. 3. The momentum is normalized to the

0 0,05 0,1 0,15
nN[fm-3]

0

1

2

3

P M
ot
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m
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no bound states

bound states

Fig. 3. Momenta per nucleon as a function of the dissocia-
tion density for deuteron (dash-dot), triton (dash), α-particle
(solid). Bound states exist only above the respective lines.

number of nucleons in the cluster that is identical to the
velocity of the cluster on the dissociation line.

4.2 Cluster distribution

We now consider the composition of nuclear matter in
equilibrium at a temperature of T = 10 MeV. To this
end we assume that nuclear matter is composed of nu-
cleons, deuterons, tritons, 3He, and α-particles. Larger
clusters are presently not considered. We investigate three
scenarios:

A. gas of nucleons and nuclei with all properties of the
isolated systems retained (no change due to medium),

B. a gas of quasi-nucleons that contain self-energy cor-
rections, the clusters consist of quasi-nucleons but the
interaction is without Pauli blocking, hence the bind-
ing energy will not change, and

C. a gas of quasi-nucleons with Pauli blocking in the inter-
action and therefore the clusters are treated as quasi-
nuclei that include the self-energy corrections on the
cluster level and dissociation.

In the ideal situation (case A), the components retain their
properties, i.e. all particle masses stay the same. The com-
position of the system is driven by the law-of-mass action,
i.e. the equilibrium distribution functions of nuclei (con-
sisting of A nucleons) with mass mA = AmN − BA are
given by

fA(p) =
{
exp[β(p2/2mA −BA − µA)] + ε

}−1
. (29)

The composition of the system, i.e. the number of
particles as a function of the total density, for T =
10 MeV is given in fig. 4A. The density is accumulated
by the more massive clusters the larger the total densi-
ties gets. The freeze-out distribution could be read of at
ntot = 0.085 . . . 0.034 fm−3 [11]. Here and in the following
ntot = nN+2nb2+3nb3+4nb4 . Figure 4B refers to the result
of the quasi-particle approximation (case B) for nucleons,
instead of using ideal nucleons. In this case the medium
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Fig. 4. Numbers of nucleon (long dashed), deuteron (dotted),
triton or 3He (dashed), 4He (solid) as a function of the total
density ntot at T = 10 MeV. Total number of nucleons 250. A)
ideal system B) quasi-particle system, C) full calculation with
dissociation.

effects are taken into account in the Hartree-Fock approxi-
mation on the single particle level. This results in different
self-energies for the nucleon and in turn the mass of nuclei
changes accordingly, see eq. (4),

ε(k) ' k2/2meff +Σ(0) . (30)

The right-hand side of eq. (30), known as effective mass
approximation, is valid for the rather low momenta and
densities considered, hence meff = mN (µ, T ) approxi-
mately independent of the momentum k. The distribution

functions change to

fA(p) = {exp[β(p
2/2meff

A −BA − µ
eff
A )] + ε}−1 (31)

and now meff
A = Ameff − BA. In chemical equilibrium

µeffA = Aµeff , where µeff = µ − Σ(0). The results are
rather close to the ideal-gas case, because the change of
the self-energy of the cluster due to the binding energy
of the bound nuclei is not taken into account. Differences
appear at larger densities.

The situation changes drastically for case C, if the
change of the binding energy as discussed above is taken
into account,

BA → BA(p, T, µ) ≡ Beff
A . (32)

This, however, needs a solution of few-body in-medium
equations as given in the previous section. The effects
induced by this change in binding energy are shown in
fig. 4C. The equation for the density of the cluster changes,
because the bound state exists only above the momentum
of dissociation as shown in fig. 3. The definition of the
density changes accordingly, see eq. (8),

nbA(µ, T ) = (2S + 1)(2I + 1)
∑

p>pdis

fA(p). (33)

Also the distribution function is different from the previ-
ous definition, since now the change of the binding energy
has to be taken into account:

fA(p) = {exp[β(p
2/2meff

A −Beff
A − µeffA )] + ε}−1 , (34)

where now meff
A = AmN (µ, T ) − Beff

A and Beff
A is given in

fig. 2 for the α-particle, for the three-body case in [16] and
for the deuteron in [36], and references therein.

The change between the ideal (or quasi-particle) pic-
ture and the full calculation that includes self-energy cor-
rections and dissociation of the clusters appears quite de-
cisive. Whereas for rigid nuclei the number of heavy parti-
cles is much higher than the number of light particles, this
is different, if the dissociation is taken into account. The
geometrical interpretation of dissociation is because less
low-momentum components (large-distance components)
are available for the formation of a bound state. If the
momentum is higher, the nucleus moves out of the Fermi
sphere of the surrounding matter and the particle becomes
more stable. The fact that no bound states are possible
does not mean that there are no correlations. Previously
we found by analyzing the Jost function of the deuteron
that as the deuteron moves towards lower binding ener-
gies and eventually crosses the continuum line (B2 = 0) it
exists as a virtual bound state on the unphysical energy
sheet [34]. In its turn this means that particular correla-
tions in the continuum can form deuterons, if the density
becomes low enough (for a given temperature). A simi-
lar study for three- and four-body states still needs to be
done. On the other hand, scattering states are infinitely
extended, in contrast to bound states. So neglecting those
few-body correlations related to scattering states may not
be the worst approximation to start with.
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Fig. 5. Evolution of the density in the xz-plane as provided by a BUU simulation [18] of a central collision of Xe on Sn.

To give an example for possible consequences of this
finding, we investigate the multiplicities of light fragments
in a heavy ion collision. We investigate conditions close to
the INDRA experiment Xe on Sn at 50A MeV [9] stud-
ied earlier within the context of a BUU simulation [5]. We
focus on the final stage of the collision and for simplic-
ity assume a homogeneous temperature of T = 10 MeV
that might slightly be too high for a quantitative compari-
son, but is still reasonable. Also, we use symmetric nuclear
matter that is not achieved in the experiment mentioned.
However, the basic effects that we focus on in this paper
are not changed: We found previously that asymmetric
nuclear matter (using the asymmetry induced by the ex-
periment Xe on Sn) has very little effect on the dissocia-
tion of 3He and triton. Quantitatively, this effect is in the
same order of magnitude as the Coloumb correction [33].

The BUU simulation of the central collision of Xe on
Sn at 50A MeV provides a realistic nuclear density dis-
tribution for the INDRA experiment. A cut through the

xz-plane is shown in fig. 5 [18]. To simplify and model this
density distribution, we assume a homogeneous spherical
distribution of radius R that approximately matches the
size of the simulation at about 40 fm/c (R = 7.5 fm) and
about 140 fm/c (R = 20 fm) after the collision. The ra-
dial change is assumed to be linear. The resulting change
of the local density with respect to time for this simple
expanding fire ball is shown in fig. 6.

The multiplicities of nucleons, deuterons, 3He/3H, and
α-particles for the densities evolution of fig. 6 and a tem-
perature of T = 10 MeV for a total number of nucleons
of 250 are given in fig. 7. This is the main result of the
present calculation.

4.3 Discussion

At around t = 100 fm/c the number of α-particles is much
larger than the number of other clusters. This time, which



268 The European Physical Journal A

0 50 100 150 200
t [fm/c]

0

0,05

0,1

n to
t[f

m
-3

]

Fig. 6. Evolution of total density in a uniform model. Param-
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Fig. 7. Total numbers of protons, neutrons (both identical
in symmetric nuclear matter, long-dashed), deuteron (dots),
triton, 3He (both dashed), and α particles (solid) as a function
of collision time at T = 10 MeV.

(approximately) corresponds to about 3-4 times the initial
volume, can be considered as freeze-out time (related to
the freeze-out volume [10]). Hence the multiplicities at this
time should be significantly correlated with the experi-
mentally observed ones. Indeed, the total multiplicities of
α-particles in the above-mentioned INDRA experiments
Xe + Sn are larger than those of the lighter clusters [10].

In contrast to the full calculation, the other equilib-
rium scenarios discussed above have the opposite order-
ing of multiplicities which can be concluded from fig. 4 for
ntot ' 0.04 fm−3 and does not reflect the experimental
finding for the large excess of α-particles. We argue that
the enhancement of α-particles is also related to the fact
that the α-particle is more stable in low-density nuclear
matter than the other light clusters. Our findings of the or-
dering of multiplicities for the light fragments obtained via
a microscopic approach and including dissociation might
provide a natural explanation to the excess of α-particles.
However, for a thorough comparison with experimental
data, several other aspects have to be taken into account
as mentioned in [10,13]. However, some of them need a
major effort while going beyond the model of an ideal gas
of components.

Concerning larger (light) clusters than the ones con-
sidered so far, note that they are weaker bound than the
α-particle. Therefore they should be less stable in medium.
Hence, at freeze-out their multiplicity should be smaller
than that of the α-particle. However, a more quantitative
analysis is certainly needed. A microscopic treatment of
more complex (light) nuclei could be achieved, e.g., by
introducing effective inter-cluster potentials, e.g. 12C as
a 3α-system etc. This one and similar nuclei are studied
within such an approach as isolated few-body systems. In
contrast to the isolated case the clusters and the effective
potentials differ for different thermodynamic parameters
due to the self-energy corrections and the Pauli blocking.
Certainly, larger and heavier clusters are seen in the ex-
periment. Therefore it is reasonable to argue that quite
a few of the nucleons left uncorrelated in fig. 7 might be
bound in larger clusters. While those are rather easy to in-
corporate in the ideal-gas picture, a quantitative analysis
including medium dependence such as self-energy correc-
tions and Pauli blocking along the lines presented in our
paper is more elaborate and presently left for future com-
munication.

Within the equilibrium scenario the most stable nu-
cleus might be Fe. However, little is known about the
properties of Fe at finite temperature. At low densities
one might expect a linear dependence of the binding en-
ergy (perturbative theory), however the calculation for the
α-particle shows that this might not be quite the case for
a stronger bound system. On the other hand, during (cen-
tral) heavy ion collision the dynamical generation of heavy
nuclei needs time due to many (binary) collisions in the
system and such heavy elements might not recombine at
all for the short time scale given in such an evaporation
scenario [12].

Evaluation of the cluster Green functions based on
the Dyson expansion is presently done for an uncorre-
lated medium (mean field). The parameters characterizing
the medium in the quasi-particle Fermi functions used in
sect. 3 are the chemical potential µ and the temperature
T . The chemical potential has been derived from the equa-
tion of state (1) with the approximation given in sect. 2
for the three equilibrium scenarios introduced in sect. 4.2
via iteration. This results in the nuclear density that is
given by the baryon number per volume, irrespective if
the nucleon is bound in a cluster or not. In the presence
of clusters such a treatment is no longer self-consistent,
if uncorrelated Fermi functions are used in the few-body
equations of sect. 3. As a consequence the binding en-
ergies that feeds into the equations of state for case C
may change. Since the freeze-out occurs at rather mod-
erate nuclear densities higher-order effects in the density
may not lead to large changes in the binding energies.
This may be concluded from the dependence of the bind-
ing energies on the density (see fig. 1) which is not far
from linear. To calculate this presumably small effect, the
next steps of the program would be to implement the
three- and four-body correlations into the then generalized
Fermi functions that should be used in suitably general-
ized few-body equations. Such a self-consistent treatment
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is technically involved, and only recently, such a program
has been achieved for two-nucleon correlations in nuclear
matter. The Dyson expansion utilized here is well suited
for a systematic improvement, by including the memory
(or retardation) term in the Dyson equation. This would
lead to the more advanced few-body equations that in-
clude more general spectral densities/functions than for
particle or quasiparticle alone and are necessary for self-
consistency. To our knowledge such equations have not
even been spelled out for the three- and four-body case.
In view of possible improvements of our microscopic ap-
proach, we mention here that medium effects are usually
taken into account by phenomenological parameters, e.g.,
geometrical considerations, volume effects, etc. Our ap-
proach is also a step towards a more microscopic justifi-
cation of those parameters.

5 Conclusion

We have shown that a systematic microscopic calcula-
tion provides strong changes in the equilibrium composi-
tion of clusters in nuclear matter. The changes are strong
enough to invert the ordering of multiplicities at freeze-
out compared to the ideal case. Therefore an explana-
tion of experimental results in terms of a microscopic pic-
ture with realistic nucleon nucleon forces evaluated in an
equilibrium scenario might be possible. Note that a de-
tailed comparison of this approach to the experimental
data as, e.g., given by the INDRA Collaboration for the
SMM [9,10], needs much further investigation and has to
be postponed to a future communication. The Dyson ex-
pansion is presently used in the context of nuclear physics
but not restricted to it. Clustering phenomena occur in
other branches of physics as well, e.g., in low-dimensional
electron plasmas, where one is interested in excitons, tri-
ons, di-excitons, but correlations also occur in atomic and
molecular quantum liquids.
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5. M. Beyer, C. Kuhrts, G. Röpke, P.D. Danielewicz, Phys.

Rev. C 63, 034605 (2001).
6. J. Aichelin, Phys. Rep. 202, 233 (1991).

7. G. Peilert et al., Phys. Rev. C 46, 1457 (1992).
8. R. Nebauer, J. Aichelin, Nucl. Phys. A 650, 65 (1999);

INDRA Collaboration (R. Nebauer et al.), Nucl. Phys. A
658, 67 (1999).

9. INDRA Collaboration (D. Gorio et al.), Eur. Phys. J. A
7, 245 (2000), and references therein.

10. INDRA Collaboration (S. Hudan et al.), Phys. Rev. C 67,
064613 (2003).

11. INDRA Collaboration (B. Borderie et al.), Phys. Lett. B
388, 224 (1996).

12. INDRA Collaboration (B. Borderie et al.), Phys. Lett. B
353, 27 (1995).

13. A.Z. Mekjan, Phys. Rev. C 17, 1051 (1978).
14. R.K. Tripathi, L.W. Townsend, Phys. Rev. C 50, R7

(1994).
15. J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin,

K. Sneppen, Phys. Rep. 257, 133 (1995).
16. M. Beyer, W. Schadow, C. Kuhrts, G. Röpke, Phys. Rev.
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